
A Prediction-based Real-time Scheduling Advisor

Peter A. Dinda
Department of Computer Science, Northwestern University

pdinda@cs.northwestern.edu

Abstract

The real-time scheduling advisor (RTSA) is an entirely user-
level system that an application running on a typical shared, un-
reserved distributed computing environment can turn to for advice
on how to schedule its compute-bound soft real-time tasks. Given
a list of hosts, a description of the CPU demands of the task, the
deadline, and a confidence level, the RTSA will recommend one of
the hosts and predict, as a confidence interval, the running time
of the task on that host. The RTSA is based on a scalable and
extensible shared resource prediction system based on statistical
time series analysis. In this paper, we first describe how the RTSA
builds on this underlying system to provide its service, and then we
evaluate its performance using a randomized methodology based
on real background workloads, determining the effect of differ-
ent factors. We also compare it with a random approach and a
measurement-based approach.

1. Introduction

Consider distributed interactive applications such as in-
teractive scientific visualizations [1]. Such applications
generate aperiodic tasks with soft real-time deadlines that
follow from their users’ responsiveness requirements, but
they typically must run these tasks on shared computing en-
vironments that are managed by uncoordinated commod-
ity operating systems that do not provide resource reserva-
tions, admission control, or other basic facilities upon which
distributed real-time systems [16, 10, 11, 14, 17] are built.
Furthermore, the tasks are in active competition with un-
known background workloads introduced at will by other
users. However, these applications do include adaptation
mechanisms through which they can change their behavior
in response to changing resource availability [3]. Several
adaptation frameworks have also been proposed to general-
ize these application-specific mechanisms [19, 12, 2, 13].

While adaptation mechanisms abound, there are few
control mechanisms that can make use of them to provide

Effort sponsored by the National Science Foundation under Grants ANI-
0093221, ACI-0112891, and EIA-0130869.

real-time behavior. This paper describes the design and
performance of one such control mechanism, the real-time
scheduling advisor, or RTSA. The RTSA is an entirely user
level tool that operates on behalf of a single application
and responds to a simple query. Given a list of homoge-
neous hosts, the CPU demands of a compute-intensive task,
a deadline, and a confidence level, the RTSA returns the
host where the task is most likely to meet its deadline and a
prediction of the running time of the task on that host.

The goal of the RTSA is not load-balancing or load-
sharing, but rather to help its client application meet dead-
lines and to tell it when deadlines can not be met. While the
system we consider here is targeted at compute-intensive
tasks (so transfer costs are negligible) and homogeneous
hosts, we do not believe this to be an intrinsic limitation of
our approach. We are working to relax these assumptions.

The RTSA is implemented on top of the running time
advisor (or RTA). Given a task’s CPU demands, predictions
of the load on a host, and a confidence level, the RTA pre-
dicts, as a confidence interval, the running time of the task
on the host. The details of load measurement, prediction,
and how the RTA computes its predictions of running time
have been thoroughly documented [4, 6, 7, 5]. The Network
Weather Service also provides load prediction [18]. The
RTSA is similar in spirit to the focused addressing algo-
rithm described by Ramamritham, et al [15], but it is based
on sophisticated prediction techniques, makes no assump-
tions about host cooperation, and is designed to run on com-
modity operating systems.

Figure 1 shows how the different components of the sys-
tem tie together. Every part of the system runs entirely at
user level. The reasons for the complexity of the system
are scalability and extensibility. Measurements and predic-
tions of host load (and of other resources) are intended to
be shared among all applications. There needs to be only a
single sensor and predictor per resource. Furthermore, dif-
ferent application-level performance predictions (e.g., run-
ning time) can be computed from the same resource-level
predictions. Finally, different adaptation advisors (e.g., the
RTSA) can make use of the same lower-level information
in pursuit of different goals.

1



Host Load Measurement System

Host Load Prediction System

Running Time Advisor

Real-time Scheduling Advisor

Application

Measurement Stream

Load Prediction
Request

Load Prediction
Response

Nominal time
confidence, host

Running time estimate
(confidence interval)

Nominal time, slack,
confidence, host list

Host, running time
estimate

D
ae

m
on

L
ib

ra
ryT

hi
s

P
ap

er

Figure 1. RTSA and context.

This paper concentrates on the RTSA component. We
show how the RTSA uses the RTA’s predictions to answer
application level queries. We then evaluate RTSA perfor-
mance in considerable detail, using a task model based on a
Dv [1] scientific visualization application, and background
workload (the competition) reproduced [8] from traces of a
large set of hosts [4].

The primary purpose of our evaluation is to quantify
the performance of the prediction-based strategy (called
AR(16) after the underlying predictor), but we also com-
pare AR(16) with a purely random strategy (RANDOM)
and a purely measurement-based strategy (MEASURE). We
make this comparison not because they are serious competi-
tive algorithms, but because in an important sense AR(16) is
an intermediate design. Like MEASURE, it operates greed-
ily on behalf of the application, and, like RANDOM, it
introduces beneficial randomness to avoid synchronization
with other advisors. Unlike either, it can qualify its advice,
reliably telling the application when the deadline can not be
met. We find that these benefits come at a tiny additional
cost over MEASURE.

The main conclusion that we draw is that it is feasible
for an application to reliably achieve soft real-time goals
in a typical distributed computing environment using the
RTSA. While the RTSA can provide no guarantees to the
application, it is empirically clear that its advice is quite ac-
curate. The software and traces discussed in this paper are
available from http://www.cs.northwestern.edu/�pdinda.

2. Real-time scheduling advisor

The RTSA presents a simple interface to the applica-
tion, one that can be implemented using several different
low-overhead scheduling strategies. Figure 2 shows the
API of the real-time scheduling advisor. RTSARequest
expresses the scheduling problem: Choose a host from
hosts such that a task with nominal running time tnom

int RTSAAdviseTask(RTSARequest &req,

RTSAResponse &resp);

struct RTSARequest {

double tnom;

double sf;

double conf;

Host hosts[];

};

struct RTSAResponse {

double tnom;

double sf;

double conf;

Host host;

RunningTimePredictionResponse runningtime;

};

struct RunningTimePredictionResponse {

Host host;

double tnom;

double conf;

double texp;

double tlb;

double tub;

};

Figure 2. RTSA interface.

(����), if started now, will complete in time �� � �� �����
or less with confidence conf (���� ). We refer to sf (�� )
as the slack factor. The RTSA’s response consists of a
copy of the request’s ����, �� , and ���� values, the se-
lected host, and an estimate of the task’s running time,
RunningTimePredictionResponse. This structure,
which is returned by the RTA, includes the expected running
time of the task, texp (����), and the ���� -level confidence
interval for the running time, (tlb, tub) (�� ��� �	��).

It is important to note that the scheduling problem may
not have a solution because of a lack of resources. If this
is the case, the advisor will select the host which minimizes
the running time of the task. It is the application’s responsi-
bility to verify, by using the runningtime field, whether
the task is predicted to meet its deadline or not.

The RTSAAdviseTask call is implemented thus:
1 Construct an RTA request from ���� and ����.
2 Use the RTA to predict the running time of the task on each

of the hosts as a confidence interval.
3 Find the subset of the hosts whose confidence interval upper

bound is less than the deadline, ��� � �� � �� �����. These
are the possible hosts.

4 If there are no possible hosts, add the host with the
minimum expected running time (����) to the set of possible
hosts.

5 Select a host at random from the set of possible hosts and
return it and its corresponding
RunningTimePredictionResponse to the caller via
the RTSAResponse.

The RTSA tries to select a deadline-meeting host for
its client application while it simultaneously tries to avoid

2



contending with RTSAs operating on behalf of other appli-
cations by introducing randomness into its decisions. The
amount of randomness possible depends on the load on the
hosts and the slack factor the application permits. When
load increases to the level where deadlines can not be met,
the RTSA can inform the application of this, at which point
we expect the application will back off and increase �� .

The above describes the prediction-based scheduling
strategy, which is parameterized by the host load predic-
tor that is used. In keeping with results of our study of
host load prediction we use the AR(16) predictor [7] and
thus we refer to this as the AR(16) strategy. We also stud-
ied two additional scheduling strategies: RANDOM and
MEASURE. RANDOM simply recommends a randomly
selected host. There is little chance of contention among
RANDOM-based advisors. AR(16) degenerates to RAN-
DOM when all the hosts are lightly loaded or slack factors
are high. The MEASURE strategy measures the current
load on each of the hosts and then selects the host with the
minimum load. Obviously, it is very prone to contention.
AR(16) degenerates to MEASURE when all the hosts are
heavily loaded or slack factors are low.

RANDOM obviously has no overhead. MEASURE uses
a host load sensor running on each of the hosts which in-
troduces about 0.5% CPU usage. AR(16) adds a predic-
tion filter to this sensor with unmeasurable additional over-
head [6]. The CPU demands of the RTA and RTSA are tiny
and the measurement and prediction messages are small.
The RTA and RTSA do work only in response to a schedul-
ing request from the application.

We evaluate the RTSA using three metrics. Our first
metric is the probability that a deadline is met, which we
estimate as the fraction of deadlines met for a randomly se-
lected set of tasks. Ideally, the fraction of deadlines met will
be the maximum feasible given the resources available, or
the confidence level requested by the application, whichever
is lower. The performance of the RTSA has more complex-
ity than this metric captures, however, as the metric con-
flates failures due to prediction with failures due to a lack
of resources or an overly low slack factor.

Our second metric, the fraction of deadlines met when
predicted, addresses this. This metric is an estimate of the
probability that a deadline will be met given that the RTSA
claims it can be met—it tells us how trustworthy the advi-
sor is. Recall that the application can rephrase its request
and negotiate with the RTSA until some mapping can be
found where the deadline will be met. This metric tells us
how fruitful this process is likely to be. Ideally, the frac-
tion of deadlines met when predicted will be identical to the
confidence level requested by the application. For the non-
predictive strategies, it is identical to the first metric, and so
we do not present it.

Our final metric, the average number of possible hosts,

is an estimate of the expected number of hosts on which
the deadline can be met. It is a measure of the random-
ness a strategy introduces. Ideally, this metric will be as
high as possible without affecting the other metrics. As it
grows, the probability of RTSAs interfering declines. For
the MEASURE strategy, it is one. For the RANDOM strat-
egy, it is the number of the available hosts. For the AR(16)
strategy, it depends on the factors mentioned above.

3. Workloads and scenarios

Performance evaluations are highly dependent on the
workloads used. In effect, the purpose of the RTSA is to
match its client’s foreground workload with the background
workloads on the hosts by predicting the background work-
loads and assigning tasks accordingly. In our evaluation, we
use a simple parametric model to generate the tasks, but the
background workload on each host is trace-based. The set
of hosts to which the RTSA can schedule (the scenario) is
also an important factor in RTSA performance.

The tasks we schedule arrive consecutively, with a
delay between completion and the next arrival selected
from ���� ��� seconds, a uniform distribution from 5 to
15 seconds. Each task is compute-bound with ���� �

������ ���� seconds and �� � ���� ��. This model is cho-
sen to be appropriate for the isosurface extraction stage of
an interactive visualization pipeline [3]. ���� is set to 95%
in all cases. We assume here that migration costs are neg-
ligible or can be factored out. For this specific application,
data is inherently remote and thus migration happens re-
gardless of where the task is executed.

Our background workloads are derived from a large fam-
ily of long host load traces taken on a wide variety of ma-
chines. The host load measure is the Digital Unix 5 second
load average. Our load sensor samples this measure at a rate
of 1 Hz, which is twice the empirically determined kernel
frequency. It is this discrete time signal that we predict.

There are 39 traces, each roughly one week long and
sampled at the appropriate 1 Hz frequency. The traces
include production cluster machines at the Pittsburgh Su-
percomputing Center (PSC), research cluster machines at
Carnegie Mellon (CMU), big memory application servers
at CMU, and desktop workstations at CMU. The character-
istics of the traces are discussed in detail elsewhere [4].

We generate a background workload on a host by replay-
ing one of these traces using a new technique called host
load trace playback [8]. With no other work on the host,
this background load results in the host’s load signal repeat-
ing that of the load trace. When foreground work is added to
the host, the two workloads share the machine according to
the kernel’s scheduling policy, and the foreground workload
is slowed down accordingly by it.

Scenarios are represented by the group of traces being

3



Scenario Description

4LS 4 hosts with high load/small epochs
4SL 4 hosts with low load/large epochs

4MM 2 hosts with high load/small epochs.
2 hosts with low load/large epochs

5SS 5 hosts with low load/small epochs
4MS 2 hosts with high load/small epochs,

2 hosts with low load/small epochs
4SM 2 hosts with low load/small epochs,

2 hosts with low load/large epochs
2CS 2 large memory compute servers
2MP 2 very predictable hosts

Figure 3. Scenarios used in evaluation

played back. For the most part, we chose scenarios based
on how our load traces are clustered by their statistics, the
dominant statistics being the mean load and the mean epoch
length of traces. We classified each trace as having “low”
or “high” mean load, and “small” or “large” mean epoch
lengths. The traces in a scenario could all be of low load,
high load, or a “mixed” combination. Similarly, the sce-
nario’s traces could all be of small epochs, large epochs, or
a mixed combination. The crossproduct forms nine classes.
Unfortunately, because we have no traces which are simul-
taneously of high mean load and long mean epoch length,
only six of the classes were realizable. Figure 3 lists these
scenarios, which are constructed from the PSC traces.

We added two additional scenarios, also shown in the
figure. In 2CS, the RTSA chooses between two compute
servers. 2MP, based on CMU traces, includes two highly
predictable hosts, which we use as an environment to test
how multiple RTSAs might interact.

4. Evaluation

We evaluated the RTSA using a dedicated cluster, gen-
erating a background workload on each host using the trace
appropriate to the scenario. Using the cluster, we ran large
numbers of tasks randomized with respect to their start-
ing time, the slack factor, the nominal time, and the strat-
egy used. For each task, the RTSA’s advice was followed,
the task was executed on the suggested host, and the re-
sults logged. Using the testcases produced by applying this
methodology, we then estimated the values for the three
performance metrics under different constraints on the sce-
nario, slack factor, and nominal time.

In the following, we begin by documenting our method-
ology. Next, we present the results for the representative
4LS scenario in considerable detail. This leads into a dis-
cussion of contention effects. Finally, we summarize our
results. Except where noted, the differences we note are
significant to � � ����, assuming the sample is random.

Our infrastructure consisted of dedicated Alphastation
255 hosts, each running Digital Unix 4.0D. One host is re-
ferred to as the recording host while the others are called
measurement hosts. The recording host runs the RTSA and
RTA and is where tasks are submitted. The measurement
hosts are the hosts from which the RTSA must choose. Each
measurement host runs the following components: the load
playback tool, a load sensor, one or more prediction sys-
tems, and a cycle server. The configuration of the predic-
tion systems is discussed elsewhere [7, 5]. The cycle server
runs tasks—it takes requests to compute (using a busy loop)
for some number of CPU-seconds and then returns the wall-
clock time that the task took to complete.

To evaluate the RTSA given a particular scenario, we
started up the infrastructure with a particular scenario, al-
lowed it to quiesce for at least 600 seconds and ran a
stream of consecutive tasks chosen according to the work-
load model. We scheduled each task using a randomly cho-
sen strategy and record the strategy used, the arrival time
(���
), the nominal time (����), the slack factor (�� ), the
predicted running time ([���, �	�], ����), and the actual run-
ning time (���
). For the 4LS scenario, we ran 16,000 tasks.
For each of the other scenarios we ran about 8,000 tasks.
The information recorded for each task forms a testcase.
Testcases ran at a rate of 222 per hour. Notice that this pro-
cedure allows us to make only unpaired comparisons [9, pp.
209–212] between the strategies.

4LS scenario in detail

The performance of the RTSA on the 4LS scenario is rep-
resentative of its performance on the other scenarios we ex-
amined. The primary difference is that the dependence of
the metrics on the slack factor is more clearly visible be-
cause all of the hosts have high load.

Figure 4 illustrates how the performance metrics vary
with slack factor for each of the scheduling strategies using
the 4LS scenario. A point represents the interval between it
and the preceding point and contains about 667 testcases.

The fraction of deadlines met (Figure 4(a)) is a function
of the quality of the scheduling strategy and the relationship
of the slack factor to the resources available. When �� is
very low, performance is dominated by the fact that it is
exceedingly rare for a machine to have sufficiently low load
to meet the deadline. There is no real benefit to prediction
here. As �� increases, prediction begins to provide benefit
over simple measurement.

The benefit is maximal when �� and the available re-
sources are “evenly matched”, when the probability that
there exists a host on which the deadline can be met reaches
50%. We refer to the �� for which this is true as the critical
slack factor. Beyond the critical slack factor, the benefit of
prediction over simple measurement begins to decline. For

4



(a) fraction of deadlines met

(b) fraction of deadlines met when predicted

(c) number of possible hosts

Figure 4. Performance versus slack factor,
4LS scenario, all nominal times.

AR(16), the fraction of deadlines met converges on the tar-
get level as �� continues to increase, while the metric con-
verges on 1 for the MEASURE and RANDOM strategies.

Figure 4(b) shows how the fraction of deadlines met
when predicted depends on the slack factor. Because the
RANDOM and MEASURE strategies do not report a pre-
dicted running time to the application, we have excluded

them from this graph. It is important to mention again that
one of the benefits of the AR(16) strategy is that it does pro-
vide this additional feedback. The goal of this metric is to
evaluate the quality of this feedback.

The curve in Figure 4(b) is remarkably different from
the previous graph in that the dependence on slack factor
has been drastically reduced. Ideally, this curve would be a
flat line at the target confidence level, so there is still room
for improvement. Interestingly, the non-ideal “dip” in the
curve occurs around the critical slack factor. At low �� , a
deadline-meeting host is rare, but the predicted running time
on such as host is likely to be accurate due to its low load. At
high �� , deadline-meeting hosts are plentiful, and so miss-
predicting a running time leaves plenty of hosts available.
Near the critical slack factor, however, predictor quality be-
comes critical.

Prediction error is actually independent of the slack fac-
tor (the RTA is unaware of �� ), but near the critical slack
factor, the differences in quality between different predic-
tors are highlighted the most. We also studied other pre-
dictors and found that the “correct” choice of AR(16) was
important in this regime. Better predictors would lead to
less of a dip in performance around the critical slack factor.

Figure 4(c) shows how the number possible hosts in the
RTSA’s advice varies with the slack factor for the three
strategies. At low �� , the randomness of AR(16) converges
with that of MEASURE, while at high �� , it converges with
RANDOM. Notice that even near the critical slack factor,
AR(16) chooses from approximately two hosts on average,
introducing at least that degree of randomness. Prediction-
based strategies such as AR(16) are a useful middle ground,
introducing as much randomness as is possible given the
slack, while working to meet the individual task’s goals.

Figure 5 shows the dependence of the performance met-
rics on the nominal time for the 4LS scenario. To produce
the figure, testcases of all slacks from 0 to 2 were aggre-
gated. A point represents all nominal times between it and
the preceding point and contains about 533 testcases.

Figure 5(a) shows the fraction of deadlines met as a func-
tion of ����. The DEC Unix scheduler gives a priority
boost to tasks as they finish I/O operations, and this ben-
efits shorter tasks more than longer tasks. The other load
on a host, even if it is considerable as with the 4LS hosts,
has little effect on a sub-second task, and thus most of these
tasks meet their deadlines, even using very simple strate-
gies. For longer tasks, this other load becomes increasingly
visible, and the chance of a deadline being met declines.
Notice, however, that the strategy can not be too simple—
RANDOM lags behind even for tiny tasks.

Figure 5(b) shows how the fraction of deadlines met
when predicted varies with the nominal time of the task in
the 4LS scenario. Once again, RANDOM and MEASURE
have been elided because they are not predictive. For the

5



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n 
of

 D
ea

dl
in

es
 M

et

Nominal Time (seconds)

random

measure

ar16

Target 95% Level

(a) fraction of deadlines met

(b) fraction of deadlines met when predicted

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 N
um

be
r 

of
 P

os
si

bl
e 

H
os

ts

Nominal Time (seconds)

random

measure

ar16

(c) number of possible hosts

Figure 5. Scheduling performance versus
nominal time, 4LS scenario, all slack factors.

AR(16) strategy, the metric is largely independent of the
nominal time of the task and close to the target level, al-
though there is a slight dip for 2–6 second tasks.

Figure 5(c) shows how the number of possible hosts
varies with the nominal time. Not surprisingly, because
short tasks are essentially oblivious to other load on any
host, and because the RTA is able to predict this oblivious-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n 
of

 D
ea

dl
in

es
 M

et

Nominal Time (seconds)

random

measure

ar16

Target 95% Level

(a) fraction of deadlines met

(b) fraction of deadlines met when predicted

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 N
um

be
r 

of
 P

os
si

bl
e 

H
os

ts

Nominal Time (seconds)

random

measure

ar16

(c) number of possible hosts

Figure 6. Scheduling performance versus
nominal time, 4LS scenario, critical slack.

ness, the RTSA is able to introduce considerable random-
ness into its choice of hosts using the AR(16) strategy. For
very small tasks, the choice is nearly as random as that of
the RANDOM strategy. As tasks increase in size, there are
fewer options as to where to schedule them, and so the ad-
visor constrains the randomness it introduces.

Figure 6 shows the dependence of the performance met-

6



rics on the nominal time for the 4LS scenario near the criti-
cal slack factor. Each point on the graph represents approx-
imately 67 testcases. This is a sufficiently small number
of testcases that some of the differences we note are only
statistically significant at � � ����. For all of the graphs
AR(16) is better than RANDOM at a 95% confidence level.

Near the critical slack, AR(16) is much better at meeting
deadlines than the RANDOM or MEASURE strategies. As
Figure 6(a) shows, AR(16) results in 20 to 40% more dead-
lines being met than RANDOM, and 5 to 30% more dead-
lines being met than MEASURE. As before, the fraction of
deadlines met declines with increasing nominal time.

Compared to its value over all slack factors (Figure 5(b)),
the dependence of the fraction of deadlines met when pre-
dicted on the nominal time is considerably different near
the critical slack factor (Figure 6(b)). In particular, the dip
in performance for medium-sized tasks is deeper and we
see more extreme behavior. As the nominal time increases,
the I/O boost shields us less and we become more sensi-
tive to bad predictions. Near the critical slack factor, these
errors are magnified—even small errors can lead AR(16)
erroneously to conclude that the deadline can be met.

Figure 6(c) shows how the number of possible hosts de-
pends on the nominal time near the critical slack factor. The
graph is similar to the overall dependence presented in Fig-
ure 5(c) in that the amount of randomness introduced is very
high for small tasks and declines as task size increases.

Contention

An important concern facing measurement- or prediction-
based RTSAs is that of contention between different ad-
visors. All RTSAs observe the same measurements and
predictions of signals that characterize resource availabil-
ity, but they do not coordinate their scheduling decisions.
This lack of coordination helps to make measurement- or
prediction-based RTSAs scalable, but it is conceivable that
it might synchronize their actions, leading to performance
degradation for all of them.

Two factors ameliorate the chance of this. First, requests
from interactive applications are unlikely to become syn-
chronized or even correlated because they are aperiodic and
arrive in response to user actions. If multiple interactive
applications using RTSAs are running, each is responding
to a different user, and we would expect that the users’ ac-
tions are not synchronized. The second factor is limited to
prediction-based strategies such as AR(16). These strate-
gies convert excess slack into randomness in their schedul-
ing decisions, which can serve to break any synchronization
that may be starting. The number of possible hosts metric
is our measure of this randomness.

To see if these two factors prevented repeated collisions
in practice, we ran testcases using four competing RTSAs

on the two host 2MP scenario. We found that there was
no favored client—using AR(16), each RTSA had about the
same performance in terms of our three metrics. However,
this was also the case for MEASURE. That AR(16) didn’t
do better than MEASURE here suggests that the primary
factor in avoiding contention is that task submission is not
synchronized over time or between clients.

Summary of results

Our main result is that the prediction-based AR(16) strategy
is indeed an effective RTSA implementation. This result is
based on studying each of the scenarios in Figure 3, includ-
ing the 4LS scenario we described above. The remainder
of this section summarizes the conclusions of our study and
our recommendations.

The MEASURE and AR(16) strategies significantly out-
perform the RANDOM strategy at all slack factors and all
nominal times in terms of the fraction of deadlines that are
met. AR(16) almost always performs at least as well as
MEASURE and considerably improves on its performance
near the critical slack factor. As one might expect, perfor-
mance declines for all the strategies as the nominal time of
the task increases.

Beyond meeting deadlines with higher probability than
MEASURE, AR(16) is the only strategy which can indi-
cate to the application if it believes a deadline can be met.
We measure the effectiveness of this using the fraction of
deadlines met when predicted metric. Ideally, this number
would be exactly equal to the target confidence level. We
find that with AR(16) it is close and is relatively indepen-
dent of slack factor and nominal time. This means that if
AR(16) claims that the deadline can be met on the host it
chooses, the application can be confident that if it sends the
task to that host, it will indeed meet its deadline.

AR(16) is also able to introduce appropriate amounts of
randomness into its scheduling decisions, and this random-
ness can help to avoid synchronization between multiple in-
dependent RTSAs. The distribution of missed deadlines is
identical for the three strategies.

Our overall conclusion is that using the AR(16) strategy
produces the best results in terms of all three metrics. It
is clear that RANDOM is insufficient—a MEASURE strat-
egy, at least, is indicated. AR(16) has little additional over-
head over a MEASURE strategy, and it has several bene-
fits. It can increase the probability that the deadline is met
in most cases. It can inform the application, accurately,
whether the deadline can be met. Finally, it can introduce
appropriate randomness into its scheduling decisions.

7



5. Conclusion and future work

We described the interface and implementation of a real-
time scheduling advisor that is based on the prediction of
host load and is designed to serve an individual distributed
interactive application by recommending hosts for the ap-
plication’s soft real-time tasks. Because the RTSA operates
in a shared, unreserved computing environment that it does
not control, deadlines can be missed due both to RTSA er-
rors and to a lack of resources.

To better understand the performance of the RTSA,
we conducted a randomized performance evaluation of
the system using a trace-based background workload and
a synthetic foreground workload model. In addition to
the prediction-based RTSA strategy we also considered a
purely random strategy, and a strategy based on measure-
ment of load. In contrast to the random and measurement-
based strategies, the prediction-based strategy is able to pro-
vide the application with a critical (and correct) additional
bit of feedback: whether the deadline will be met given its
choice of host.

The main conclusion is that the prediction-based strategy
is highly effective. The prediction-based strategy is able to
increase the probability that a deadline will be met over that
of the measurement-based strategy, and well over that of the
random strategy. Furthermore, the prediction-based strat-
egy’s additional feedback is quite good—when the applica-
tion is told that the deadline can be met, the chances it will
actually be met are very high. Finally, the prediction-based
strategy introduces randomness into its decision-making at
a level appropriate to the difficulty of the application’s re-
quest. This randomness helps to keep independent RTSAs
from synchronizing.

We are currently working on extending the RTSA and its
underlying software to support tasks with significant com-
munication requirements.

References

[1] M. Aeschlimann, P. Dinda, L. Kallivokas, J. Lopez,
B. Lowekamp, and D. O’Hallaron. Preliminary report
on the design of a framework for distributed visualization.
In Proceedings of the International Conference on Paral-
lel and Distributed Processing Techniques and Applications
(PDPTA’99), pages 1833–1839, Las Vegas, NV, June 1999.
CSREA Press.

[2] F. Berman and R. Wolski. Scheduling from the perspective
of the application. In Proceedings of the Fifth IEEE Sympo-
sium on High Performance Distributed Computing HPDC96,
pages 100–111, August 1996.

[3] P. Dinda, B. Lowekamp, L. Kallivokas, and D. O’Hallaron.
The case for prediction-based best-effort real-time systems.
In Proc. of the 7th International Workshop on Parallel and
Distributed Real-Time Systems (WPDRTS 1999), volume
1586 of Lecture Notes in Computer Science, pages 309–318.

Springer-Verlag, San Juan, PR, 1999. Extended version as
CMU Technical Report CMU-CS-TR-98-174.

[4] P. A. Dinda. The statistical properties of host load. Scientific
Programming, 7(3,4), 1999. A version of this paper is also
available as CMU Technical Report CMU-CS-TR-98-175. A
much earlier version appears in LCR ’98 and as CMU-CS-
TR-98-143.

[5] P. A. Dinda. Online prediction of the running time of tasks.
Cluster Computing, 2002. To appear, earlier version in
HPDC 2001, summary in SIGMETRICS 2001.

[6] P. A. Dinda and D. R. O’Hallaron. An extensible toolkit for
resource prediction in distributed systems. Technical Report
CMU-CS-99-138, School of Computer Science, Carnegie
Mellon University, July 1999.

[7] P. A. Dinda and D. R. O’Hallaron. Host load prediction us-
ing linear models. Cluster Computing, 3(4), 2000. Earlier
version in HPDC 1999.

[8] P. A. Dinda and D. R. O’Hallaron. Realistic CPU work-
loads through host load trace playback. In Proc. of 5th
Workshop on Languages, Compilers, and Run-time Systems
for Scalable Computers (LCR2000), volume 1915 of Lec-
ture Notes in Computer Science, Rochester, New York, May
2000. Springer-Verlag.

[9] R. Jain. The Art of Computer Systems Performance Analysis.
John Wiley and Sons, Inc., 1991.

[10] J. F. Kurose and R. Chipalkatti. Load sharing in soft real-
time distributed computer systems. IEEE Transactions on
Computers, C-36(8):993–1000, August 1987.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard real-time environment. Journal of
the ACM, 20(1):46–61, January 1973.

[12] J. Lopez and D. O’Hallaron. Runtime support for adap-
tive heavyweight services. In Proc. of 5th Workshop on
Languages, Compilers, and Run-time Systems for Scalable
Computers (LCR2000), volume 1915 of Lecture Notes in
Computer Science, pages 221–234, Rochester, NY, 2000.
Springer-Verlag.

[13] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile application-aware adapta-
tion for mobility. In Proceedings of the 16th ACM Sympo-
sium on Operating Systems Principles, 1997. To Appear.

[14] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource
kernels: A resource-centric approach to real-time systems.
In Proceedings of the SPIE/ACM Conference on Multimedia
Computing and Networking, January 1998.

[15] K. Ramamrithham, J. A. Stankovic, and W. Zhao. Dis-
tributed scheduling of tasks with deadlines and resource
requirements. IEEE Transactions on Computer Systems,
38(8):1110–1123, August 1989.

[16] D. C. Schmidt, A. Gokhale, T. H. Harrison, and G. Parulkar.
A high-performance endsystem architecture for real-time
CORBA. IEEE Communication Magazine, 14(2), February
1997.

[17] J. Stankovic, K. Ramamritham, D. Niehaus, M. Humphrey,
and G. Wallace. The spring system: Integrated support
for complex real-time systems. Real-Time Systems Journal,
16(2/3), May 1999.

[18] R. Wolski, N. Spring, and J. Hayes. Predicting the CPU
availability of time-shared unix systems. In Proceedings
of the Eighth IEEE Symposium on High Performance Dis-
tributed Computing HPDC99, pages 105–112. IEEE, August
1999. Earlier version available as UCSD Technical Report
Number CS98-602.

[19] J. A. Zinky, D. E. Bakken, and R. E. Schantz. Architectural
support for quality of service for CORBA objects. Theory
and Practice of Object Systems, 3(1):55–73, April 1997.

8


